Paper Reference(s) 66663/01 Edexcel GCE

Core Mathematics C1

Advanced Subsidiary

Wednesday 13 May 2015 - Morning

Time: 1 hour 30 minutes

Materials required for examination Mathematical Formulae (Pink) Items included with question papers Nil

Calculators may NOT be used in this examination.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C1), the paper reference (6663), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for the parts of questions are shown in round brackets, e.g. (2). There are 10 questions in this question paper. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. **1.** Simplify

(a)
$$(2\sqrt{5})^2$$
, (1)

(b)
$$\frac{\sqrt{2}}{2\sqrt{5}-3\sqrt{2}}$$
, giving your answer in the form $a + \sqrt{b}$, where a and b are integers. (4)

2. Solve the simultaneous equations

$$y - 2x - 4 = 0$$

$$4x^2 + y^2 + 20x = 0$$
 (7)

3. Given that
$$y = 4x^3 - \frac{5}{x^2}$$
, $x \neq 0$, find in their simplest form

(a)
$$\frac{dy}{dx}$$
,
(b) $\int y \, dx$.
(3)

4. (i) A sequence U_1, U_2, U_3, \dots is defined by

$$U_{n+2} = 2U_{n+1} - U_n, \quad n \ge 1,$$

 $U_1 = 4 \text{ and } U_2 = 4.$

Find the value of

(a)
$$U_3$$
, (1)

(b)
$$\sum_{n=1}^{20} U_n$$
. (2)

(ii) Another sequence V_1, V_2, V_3, \dots is defined by

$$V_{n+2} = 2V_{n+1} - V_n, \quad n \ge 1,$$

$$V_1 = k$$
 and $V_2 = 2k$, where k is a constant.

(a) Find V_3 and V_4 in terms of k.

(2)

(3)

Given that
$$\sum_{n=1}^{5} V_n = 165$$
,

(b) find the value of k.

5. The equation

 $(p-1)x^{2} + 4x + (p-5) = 0$, where p is a constant,

has no real roots.

- (a) Show that p satisfies $p^2 6p + 1 > 0$.
- (*b*) Hence find the set of possible values of *p*.

(3)

(4)

P43145A

6.

(a) Find $\frac{dy}{dx}$ in its simplest form.

The curve C has equation

(b) Find an equation of the tangent to C at the point where x = -1.

Give your answer in the form ax + by + c = 0, where a, b and c are integers.

- Given that $y = 2^x$, 7.
 - (a) express 4^x in terms of y.
 - (b) Hence, or otherwise, solve
- (a) Factorise completely $9x 4x^3$. 8.
 - (b) Sketch the curve C with equation

 $y = 9x - 4x^{3}$.

Show on your sketch the coordinates at which the curve meets the *x*-axis.

(3)

The points A and B lie on C and have x coordinates of -2 and 1 respectively.

(c) Show that the length of AB is $k\sqrt{10}$, where k is a constant to be found.

(4)

$$=9r-4r^3$$

4

 $8(4^x) - 9(2^x) + 1 = 0.$ (4)

$$y = \frac{(x^2 + 4)(x - 3)}{2x}, x \neq 0.$$

(3)

(5)

(5)

(1)

- 9. Jess started work 20 years ago. In year 1 her annual salary was £17000. Her annual salary increased by £1500 each year, so that her annual salary in year 2 was £18500, in year 3 it was £20000 and so on, forming an arithmetic sequence. This continued until she reached her maximum annual salary of £32000 in year k. Her annual salary then remained at £32000.
 - (*a*) Find the value of the constant *k*.

(2)

(5)

- (b) Calculate the total amount that Jess has earned in the 20 years.
- 10. A curve with equation y = f(x) passes through the point (4, 9).

Given that

f'(x) =
$$\frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2$$
, x > 0,

(a) find f(x), giving each term in its simplest form.

Point *P* lies on the curve.

The normal to the curve at *P* is parallel to the line 2y + x = 0.

(b) Find the x-coordinate of P.

(5)

(5)

TOTAL FOR PAPER: 75 MARKS

Question Number		Scheme	Marks
1.(a)	20	Sight of 20. (4×5 is not sufficient)	B1
			(1)
(b)	$\frac{\sqrt{2}}{2\sqrt{5}-3\sqrt{2}} \times \frac{2\sqrt{5}+3\sqrt{2}}{2\sqrt{5}+3\sqrt{2}}$	Multiplies top and bottom by a correct expression. This statement is sufficient. NB $2\sqrt{5} + 3\sqrt{2} \equiv \sqrt{20} + \sqrt{18}$	M1
	(Allow to multiply t	top and bottom by $k(2\sqrt{5}+3\sqrt{2})$	
	$=\frac{\dots}{2}$	Obtains a denominator of 2 or sight of $(2\sqrt{5}-3\sqrt{2})(2\sqrt{5}+3\sqrt{2})=2$ with no errors seen in this expansion. May be implied by ${2k}$	Al
	Note that M0A1 is not possible	e. The 2 must come from a correct method.	
		ere is no need to consider the numerator.	
	e.g. $\frac{2(MR?)}{2\sqrt{5}-3\sqrt{2}}$	$\frac{2\sqrt{5}+3\sqrt{2}}{2\sqrt{5}+3\sqrt{2}} = \frac{\dots}{2}$ scores M1A1	
	Numerator = $\sqrt{2}(2\sqrt{5}\pm 3\sqrt{2}) = 2\sqrt{10}\pm 6$	An attempt to multiply the numerator by $\pm (2\sqrt{5} \pm 3\sqrt{2})$ and obtain an expression of the form $p + q\sqrt{10}$ where p and q are integers. This may be implied by e.g. $2\sqrt{10} + 3\sqrt{4}$ or by their final answer.	M1
	(Allow attempt to mult	iply the numerator by $k(2\sqrt{5}\pm 3\sqrt{2})$	
	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} = \frac{2\sqrt{10} + 6}{2} = 3 + \sqrt{10}$	Cso. For the answer as written or $\sqrt{10} + 3$ or a statement that $a = 3$ and $b = 10$. Score when first seen and ignore any subsequent attempt to 'simplify'. Allow $1\sqrt{10}$ for $\sqrt{10}$	A1
			(4)
			(5 marks)
	Alt	ternative for (b)	
	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} = \frac{1}{\sqrt{10} - 3} \text{ or } \frac{2}{2\sqrt{10} - 6}$	M1: Divides or multiplies top and bottom by $\sqrt{2}$ A1: $\frac{k}{k(\sqrt{10}-3)}$	M1A1
	$=\frac{1}{\sqrt{10}-3} \times \frac{\sqrt{10}+3}{\sqrt{10}+3} $ M1	: Multiplies top and bottom by $\sqrt{10} + 3$	M1
	$=3+\sqrt{10}$		A1
2.	y - 2x - 4	$=0, \ 4x^2 + y^2 + 20x = 0$	

Question Number	Scheme		
	$y = 2x + 4 \implies 4x^{2} + (2x + 4)^{2} + 20x = 0$ or $2x = y - 4 \text{ or } x = \frac{y - 4}{2}$ $\implies (y - 4)^{2} + y^{2} + 10(y - 4) = 0$	Attempts to rearrange the linear equation to $y =$ or $x =$ or $2x =$ and attempts to fully substitute into the second equation.	M1
	$8x^{2} + 36x + 16 = 0$ or $2y^{2} + 2y - 24 = 0$	M1: Collects terms together to produce quadratic expression = 0. The '= 0' may be implied by later work. A1: Correct three term quadratic equation in x or y . The '= 0' may be implied by later work.	M1 A1
	$(4)(2x+1)(x+4) = 0 \Longrightarrow x = \dots$ or $(2)(y+4)(y-3) = 0 \Longrightarrow y = \dots$	Attempt to factorise and solve or complete the square and solve or uses a correct quadratic formula for a 3 term quadratic.	M1
	x = -0.5, x = -4 or y = -4, y = 3	Correct answers for either both values of x or both values of y (possibly un-simplified)	A1 cso
	Sub into $y = 2x + 4$ or Sub into $x = \frac{y-4}{2}$	Substitutes at least one of their values of x into a correct equation as far as $y =$ or substitutes at least one of their values of y into a correct equation as far as $y =$	M1
	y = 3, y = -4 and x = -4, x = -0.5	Fully correct solutions and simplified. Pairing not required. If there are any extra values of <i>x</i> or <i>y</i> , score A0.	A1
			(7 marks)
	Special Cas	e: Uses $y = -2x - 4$	
	$y = 2x + 4 \Longrightarrow 4x^{2} + (-2x - 4)^{2} + 20x = 0$		M1
	$8x^2 + 36x + 16 = 0$		M1A1
	$(4)(2x+1)(x+4) = 0 \Longrightarrow x = \dots$		M1
	x = -0.5, x = -4		A0
	Sub into $y = 2x + 4$	Sub into $y = -2x - 4$ is M0	M1
	y = 3, y = -4 and x = -4, x = -0.5		A0

Question Number	Scheme	Marks
3.	$y = 4x^3 - \frac{5}{x^2}$ M1: $x^n \rightarrow x^{n-1}$	
(a)	$12x^{2} + \frac{10}{x^{3}}$ $12x^{2} + \frac{10}{x^{3}}$ $12x^{2} + \frac{10}{x^{3}}$ $M1: x^{n} \rightarrow x^{n-1}$ e.g. Sight of x^{2} or x^{-3} or $\frac{1}{x^{3}}$ $A1: 3 \times 4x^{2}$ or $-5 \times -2x^{-3}$ (oe) (Ignore + c for this mark) $A1: 12x^{2} + \frac{10}{x^{3}}$ or $12x^{2} + 10x^{-3}$ all on one line and no + c	
	Apply ISW here and award marks when first seen.	
		(3)
	M1: $x^n \rightarrow x^{n+1}$. e.g. Sight of x^4 or x^{-1} or $\frac{1}{x^1}$	
	$x^{4} + \frac{5}{x} + c$ or $A1: 4\frac{x^{4}}{4} \text{ or } -5 \times \frac{x^{-1}}{-1}$	M1A1A1
(b)	$x^{4} + 5x^{-1} + c$ A1: For fully correct and simplified answer with + c all on one line. Allow $x^{4} + 5 \times \frac{1}{x} + c$ Allow $1x^{4}$ for x^{4}	
F	Apply ISW here and award marks when first seen. Ignore spurious integral	
	signs for all marks.	
		(3)
		(6 marks)

Question Number	Sch	eme	Marks
4(i).(a)	$U_{3} = 4$	cao	B1
			(1)
(b)	$\sum_{n=1}^{n=20} U_n = 4 + 4 + 4 \dots + 4 \text{ or } 20 \times 4$	For realising that all 20 terms are 4 and that the sum is required. Possible ways are $4+4+4++4$ or 20×4 or $\frac{1}{2}\times20(2\times4+19\times0)$ or $\frac{1}{2}\times20(4+4)$ (Use of a correct sum formula with n = 20, a = 4 and $d = 0$ or $n = 20$, a = 4 and $l = 4$)	M1
	= 80	cao	A1
	Correct answer with no	working scores M1A1	
			(2)
(ii)(a)	$V_3 = 3k, V_4 = 4k$	May score in (b) if clearly identified as V_3 and V_4	B1, B1
			(2)
(b)	$\sum_{n=1}^{n=5} V_n = k + 2k + 3k + 4k + 5k = 165$ or $\frac{1}{2} \times 5(2 \times k + 4 \times k) = 165$ or $\frac{1}{2} \times 5(k + 5k) = 165$	Attempts V_5 , adds their V_1, V_2, V_3, V_4, V_5 AND sets equal to 165 or Use of a correct sum formula with a = k, d = k and $n = 5$ or $a = k, l = 5kand n = 5 AND sets equal to 165$	M1
	$15k = 165 \Longrightarrow k = \dots$	Attempts to solve their linear equation in <i>k</i> having set the sum of their first 5 terms equal to 165. Solving $V_5 =$ 165 scores no marks.	M1
	<i>k</i> =11	cao and cso	A1 (3)
-			(8 marks)

Question Number			Sche	me	Marks
5(a)	$b^{2} - 4ac < 0 \Rightarrow$ $4^{2} - 4(p-1)(p-5)$ $b^{2} - 4(p-1)(p-5)$ $b^{2} - 4(p-1)(p-5)$	(5) < 0 or (5) - 5) or (-5) or $(-5) - 4^2$	two of quadra examp Must b equatio M1.Th A1: Fo	ttempts to use $b^2 - 4ac$ with at least <i>a</i> , <i>b</i> or <i>c</i> correct. May be in the tic formula. Could also be, for le, comparing or equating b^2 and $4ac$. be considering the given quadratic on. Inequality sign not needed for this ere must be no <i>x</i> terms. or a correct un-simplified inequality not the given answer	M1A1
	$4 < p^2 - 6p^2$			Correct solution with no errors that includes an expansion of $(p-1)(p-5)$	A1*
(b)	$p^2 - 6p + 1 = 0 \Rightarrow$	> <i>p</i> =	their q (do not using t	For an attempt to solve $p^2 - 6p + 1 = 0$ (not <u>their</u> quadratic) leading to 2 solutions for <i>p</i> (do not allow attempts to factorise – must be using the quadratic formula or completing the square)	
	$p = 3 \pm \sqrt{8}$	$p = 3 \pm 2\sqrt{2} \text{ or any equivalent correct expressions e.g.}$ $p = \frac{6 \pm \sqrt{32}}{2} \text{ (May be implied by their inequalities)}$ Discriminant must be a single number not e.g. 36 - 4		A1	
-	Allow the M1A			e for solving the given quadratic	
	$p < 3 - \sqrt{8}$ or			M1: Chooses outside region – not dependent on the previous method mark A1: $p < 3-\sqrt{8}$, $p > 3+\sqrt{8}$ or equivalent e.g. $p < \frac{6-\sqrt{32}}{2}$, $p > \frac{6+\sqrt{32}}{2}$ $(-\infty, 3-\sqrt{8}) \cup (3+\sqrt{8}, \infty)$ Allow ",", "or" or a space between the answers but do not allow $p < 3-\sqrt{8}$ and $p > 3+\sqrt{8}$ (this scores M1A0) Apply ISW if necessary.	M1A1
	A correct solution to	o the quadr	atic foll	owed by $p > 3 \pm \sqrt{8}$ scores M1A1M0A	.0
		$3 + \sqrt{8} <$	p < 3 -	$\sqrt{8}$ scores M1A0	
A	llow candidates to u	se x rather	than p l	but must be in terms of <i>p</i> for the final	A1
					(4)
					(7 marks)

Question Number	Schen	ne	Marks
6(a)	$(x^2+4)(x-3) = x^3 - 3x^2 + 4x - 12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
	$\frac{x^3 - 3x^2 + 4x - 12}{2x} = \frac{x^2}{2} - \frac{3}{2}x + 2 - 6x^{-1}$	M1: Attempt to divide each term by 2x. The powers of x of at least two terms must follow from their expansion. Allow an attempt to multiply by $2x^{-1}$ A1: Correct expression. May be un-simplified but powers of x must be combined e.g. $\frac{x^2}{2}$ not $\frac{x^3}{2x}$	M1A1
	$\frac{dy}{dx} = x - \frac{3}{2} + \frac{6}{x^2}$ oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$	ddM1: $x^n \rightarrow x^{n-1}$ or $2 \rightarrow 0$ Dependent on both previous method marks. A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept 1x or even $1x^1$ but not $\frac{2x}{2}$ and not x^0 . If they lose the previous A1 because of an incorrect constant only then allow recovery here and in part (b) for a correct derivative.	ddM1A1
-			(5)
	See appendix for alternatives u	sing product/quotient rule	
(b)	At $x = -1$, $y = 10$	Correct value for <i>y</i>	B1
	$\left(\frac{dy}{dx}\right) = -1 - \frac{3}{2} + \frac{6}{1} = 3.5$	M1: Substitutes $x = -1$ into their expression for dy/dx A1: 3.5 oe cso	M1A1
	y - '10' = '3.5'(x1)	Uses their tangent gradient which must come from calculus with x = -1 and their numerical y with a correct straight line method. If using $y = mx + c$, this mark is awarded for correctly establishing a value for c.	M1
	2y - 7x - 27 = 0	$\pm k(2y-7x-27) = 0 \operatorname{cso}$	A1
			(5)
			(10 marks)

Question Number	Schem	ne	Marks
7.(a)	$(4^x =)y^2$	Allow y^2 or $y \times y$ or "y squared" " $4^x =$ "not required	B1
	Must be seen i	n part (a)	
			(1)
(b)	$8y^{2} - 9y + 1 = (8y - 1)(y - 1) = 0 \Longrightarrow y =$ or $(8(2^{x}) - 1)((2^{x}) - 1) = 0 \Longrightarrow 2^{x} =$	Allow x (or any other letter) instead of y for this mark e.g. an attempt to solve $8x^2 - 9x + 1 = 0$	M1
	$2^{x}(\text{or } y) = \frac{1}{8}, 1$	Both correct answers of $\frac{1}{8}$ (oe) and 1 for 2^x or y or their letter but not x unless 2^x (or y) is implied later	A1
	x = -3 x = 0	M1: A correct attempt to find one numerical value of x from their 2^{x} (or y) which must have come from a 3 term quadratic equation. If logs are used then they must be evaluated. A1: Both $x = -3$ and/or $x = 0$ May be implied by e.g. $2^{-3} = \frac{1}{8}$ and $2^{0} = 1$ and no extra values.	M1A1
			(4)
			(5 marks)

Question Number	Sche	eme	Marks
8(a)	$9x - 4x^3 = x(9 - 4x^2)$ or $-x(4x^2 - 9)$	Takes out a common factor of x or $-x$ correctly.	B1
	$9-4x^2 = (3+2x)(3-2x)$ or	$9-4x^2 = (\pm 3 \pm 2x)(\pm 3 \pm 2x)$ or	
	$4x^2 - 9 = (2x - 3)(2x + 3)$	$4x^2 - 9 = (\pm 2x \pm 3)(\pm 2x \pm 3)$	M1
	$(1)_{2} = (1)_$	but allow equivalents e.g. 3-2x(-3+2x) or $-x(2x+3)(2x-3)$	A1
Note: 4x	$x^{3}-9x = x(4x^{2}-9) = x(2x-3)(2x+3)$ so	$9x-4x^3 = x(3-2x)(2x+3)$ would scor	e full marks
	Note: Correct work leading to $9x(1-$	$\left(-\frac{2}{3}x\right)\left(1+\frac{2}{3}x\right)$ would score full marks	
	Allow $(x \pm 0)$ or $(-x \pm 0)$	0) instead of x and -x	
(b)			(3)
(b)	у ↑	A cubic shape with one maximum and one minimum	M1
		Any line or curve drawn passing through (not touching) the origin	B1
	(-1.5,0) 0 1.5,0) x	Must be the correct shape and in all four quadrants and pass through (-1.5, 0) and (1.5, 0) (Allow (0, -1.5) and (0, 1.5) or just -1.5 and 1.5 provided they are positioned correctly). Must be on the diagram (Allow $\sqrt{\frac{9}{4}}$	A1
		for 1.5)	
			(3)
(c)	A = (-2, 14), B = (1, 5)	B1: $y = 14$ or $y = 5$ B1: $y = 14$ and $y = 5$	B1 B1
	These must be se		
	$(AB =)\sqrt{(-2-1)^2 + (14-5)^2} (=\sqrt{90})$	Correct use of Pythagoras <u>including</u> <u>the square root.</u> Must be a correct expression for their <i>A</i> and <i>B</i> if a correct formula is not quoted	M1
	E.g. $AB = \sqrt{(-2+1)^2} + $		
	However $AB = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2} =$		
	$(AB =) 3\sqrt{10}$	cao	A1
			(4)
-			(10 marks)

Question Number				Scheme						Marks
9.(a)	$32000 = 17000 + (k-1) \times 1500 \Longrightarrow k = \dots$ in an attempt to find k. A correct formula could be implied by a correct answer.					rect	M1			
	(k =) 11 Cso (Allow $n = 11$)							A1		
				-		answer of	-			
				0 + 1500	$k \Longrightarrow k =$	10 is M0A	A0 (wrong t	formula)		
			$\frac{0-17000}{500}$	$=10 \therefore k$	=11is M	1A1 (corr	ect formula	a implied	.)	
	Li						nd 11 corre		tified.	
		A	solution	that score	es 2 if ful	ly correct	and 0 othe	rwise.		
				<u> (</u> 1				<u> </u>		(2)
(b)		$\mathbf{C} = k \mathbf{C}$		M1: $(L = 1)$			M1: Use of formula w			
		-			×1500)o	r	n = k or k			
		$\frac{k}{2}$	(17000 + 1)	32000)			where $3 <$		- · ·	
		$S = \frac{k-1}{2}$	(2×17000	(k-2))×1500)	or	17000 and			
			$\frac{-1}{2}(17000)$		·		below for	-	case for	
		2	-	A1:			using <i>n</i> =	20.		M1A1
	$S = \frac{1}{2}$	$\frac{1}{2}(2 \times 170)$			$\frac{1}{2}(17000$	+ 32000)	A1: Any o	correct ur	1-	
		$S = \cdot$	$\frac{10}{2}(2 \times 170)$	$000 + 9 \times 1000$	500) or		simplified			
			$\frac{10}{2}(1700)$	00 + 3050	0)		expression	n with $n =$	= 11 or	
		(=	= 269 50				<i>n</i> = 10			
)	22000	. 1	· · ,		
			32000×	α			α where α	x is an int	eger	M1
						and 3 <	$\alpha < 18$			
							empts to ac			
		288 000	+ 269 50	0 = 557.5	500		It is depend	-		
		220.000	0r ⊥ 227 50	0 - 557 5	:00	-	s M's being up of 20 te	•	ind must	ddM1A1
	320 000 + 237 500 = 557 500 be the sum of 20 terms i.e. $\alpha + k = 20$									
			A1: 557 500							
	Sr	oecial Ca	se: If the	ev just fi	nd S20 (£		in (b) scor	e the firs	st M1	
	·- r	_			(the sche	· · ·			
										(5)
										(7 marks)
	1	2		A	List	0	7	0	0	10
	1	2	3 20000	4 21500	5 23000	6 24500	7 26000	8 27500	9 29000	10 30500
n	7000	125101		L 2 1 J U U	∠3000	24300	20000	2/300	∠7000	30300
$u_n = 1$	7000	18500			15	16	17	18	10	20
$\frac{u_n}{n}$ 1'	7000 11 2000	18500 12 32000	13 32000	14 32000	15 32000	16 32000	17 32000	18 32000	19 32000	20 32000

If they sum the 'parts' separately then apply the scheme.

Question Number		Marks	
10(a)	$f(x) = x^{\frac{3}{2}} - \frac{9}{2}x^{\frac{1}{2}} + 2x(+c)$	M1: $x^n \rightarrow x^{n+1}$ A1: Two terms in <i>x</i> correct, simplification is not required in coefficients or powers A1: All terms in <i>x</i> correct. Simplification not required in coefficients or powers and + c is not required	- M1A1A1
	Sub $x = 4, y = 9$ into $f(x) \Rightarrow c$	= M1: Sub $x = 4$, $y = 9$ into f (x) to obtain a value for c. If no + c then M0. Use of $x = 9$, $y = 4$ is M0.	M1
	$(f(x) =) x^{\frac{3}{2}} - \frac{9}{2} x^{\frac{1}{2}} + 2x + 2$	Accept equivalents but must be simplified e.g. $f(x) = x^{\frac{3}{2}} - 4.5\sqrt{x} + 2x + 2$ Must be all 'on one line' and simplified . Allow $x\sqrt{x}$ for $x^{\frac{3}{2}}$	A1
			(5)
(b)	Gradient of normal is $-\frac{1}{2} \Rightarrow$ Gradient of tangent = +2	$\frac{2}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
	The A1 may be implied by $\frac{-1}{\frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2} = -\frac{1}{2}$		
	$\frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2 = 2 \Longrightarrow \frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}}$	Sets the given $f'(x)$ or their $f'(x)$ = their changed <i>m</i> and not their <i>m</i> where <i>m</i> has come from $2y + x = 0$	M1
	$\times 4\sqrt{x} \Longrightarrow 6x - 9 = 0 \Longrightarrow x =$	×4 \sqrt{x} or equivalent correct algebraic processing (allow sign/arithmetic errors only) and attempt to solve to obtain a value for x. If $f'(x) \neq 2$ they need to be solving a three term quadratic in \sqrt{x} correctly and square to obtain a value for x. Must be using the given $f'(x)$ for this mark.	M1
	r = 1	5) Accept equivalents e.g. $x = \frac{9}{6}$ extra' values are not rejected, score A0.	A1 (5)
	Beware $\frac{-1}{\frac{3\sqrt{x}}{2}-\frac{9}{4\sqrt{x}}+2} = -\frac{1}{2} \Longrightarrow \frac{-2}{3\sqrt{x}}$	$\frac{2}{\sqrt{x}} + \frac{4\sqrt{x}}{9} - \frac{1}{2} = -\frac{1}{2}$ etc. leads to the correct	(5)
	answer and could score N	M1A1M1M0(incorrect processing)A0	(10 marks)

	<u>Appen</u> 6(a)		
	$(x^{2}+4)(x-3) = x^{3}-3x^{2}+4x-12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
	$\frac{dy}{dx} = \frac{2x(3x^2 - 6x + 4) - 2(x^3 - 3x^2 + 4x - 3x^2)}{(2x)^2}$	M1: Correct application of quotient ruleA1: Correct derivative	M1A1
Way 2 Quotient	$=\frac{4x^{3}}{4x^{2}} - \frac{6x^{2}}{4x^{2}} + \frac{24}{4x^{2}} = x - \frac{3}{2} + \frac{6}{x^{2}}$ oe e.g. $\frac{2x^{3} - 3x^{2} + 12}{2x^{2}}$	M1: Collects terms and divides by denominator. Dependent on both previous method marks. A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept 1x or even $1x^1$ but not $\frac{2x}{2}$ and not x^0 .	ddM1A1
	$y = \left(\frac{x}{2} + \frac{2}{x}\right)(x-3) \operatorname{or}\left(x^2 + 4\right) \left(\frac{1}{2} - \frac{3}{2x}\right)$	Divides one bracket by $2x$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(x - 3\right) \left(\frac{1}{2} - \frac{2}{x^2}\right) + \left(\frac{x}{2} + \frac{2}{x}\right) \text{ or }$	M1: Correct application of product rule	- M1A1
Way 3	$\frac{dy}{dx} = (x^2 + 4)\frac{3}{2x^2} + 2x\left(\frac{1}{2} - \frac{3}{2x}\right)$	A1: Correct derivative	
Product	$=\frac{3}{2}+\frac{6}{x^2}+x-3=x-\frac{3}{2}+\frac{6}{x^2}$	M1: Expands and collects terms. Dependent on both previous method marks.	ddM1A1
	$\frac{2 - x}{\cos e \cdot g} = \frac{2x^3 - 3x^2 + 12}{2x^2}$	A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept 1x or even $1x^1$ but not $\frac{2x}{2}$ and not x^0 .	
	$(x^2+4)(x-3) = x^3 - 3x^2 + 4x - 12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
	$\frac{dy}{dx} = (x^3 - 3x^2 + 4x - 12) \times -\frac{1}{2}x$ M1: Correct application of product	M1A1	
Way 4 Product	$\frac{dy}{dx} = -\frac{x}{2} + \frac{3}{2} - \frac{2}{x} + \frac{6}{x^2} + \frac{3x}{2}$ ddM1: Expands and collects terms Dependent A1: $x - \frac{3}{2} + \frac{6}{x^2}$ or e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$ and if $\frac{2x}{2}$ and not	ddM1A1	

Appendix

	$y = \left(\frac{x}{2} + \frac{2}{x}\right)(x-3) \operatorname{or} \left(x^2 + 4\right) \left(\frac{1}{2} - \frac{3}{2x}\right)$	Divides one bracket by $2x$	M1
	$=\frac{x^2}{2}-\frac{3}{2}x+2-6x^{-1}$	M1: Expands	M1A1
	$=\frac{1}{2}-\frac{1}{2}x+2-6x$	A1: Correct expression	WIIAI
Way 5	$\frac{dy}{dx} = x - \frac{3}{2} + \frac{6}{x^2}$ oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$	ddM1: $x^n \rightarrow x^{n-1}$ or $2 \rightarrow 0$ Dependent on both previous method marks. A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept 1x or even $1x^1$ but not $\frac{2x}{2}$ If they lose the previous A1 because of an incorrect constant only then allow recovery here for a correct derivative.	ddM1A1